

Forbes Marshall

Energising Businesses and Communities Worldwide

Improvement and Sustenance of plant KPIs

Energy Conservation Focus and Importance

Parameter	S	Briquette	Rice Husk	Indonesian Coal	NG	Furnace Oil
Boiler Operating Pressure	Bar Abs	9	9	9	9	9
Boiler Efficency	%	65	65	55	85	84
Feed water temperature	°C	75	55	65	70	55
S:F		3-3.5	3-3.5	5-6	13-14	13
Fuel GCV	KCal/Kg	3700	2800	5000	9350	10200
Cost of Fuel Rs/Kg (Previous)	Rs/unit	4.5	4	6	38	42
Cost of Steam- Rs/Kg (Previous)		1.10	1.33	1.30	2.83	2.98
Cost of Fuel (Current)		7	6	13	64	62
Cost of Steam- Rs/Kg (Current)		1.71	2.00	2.82	4.77	4.39
% increase in cost of steam		56%	50%	117%	68%	48%

Variations in CRF- A Key KPI

Reasons for Variations in CRF

Poor trap uptime

Condensate evacuation through bypass valves

Proprietary c Improper steam system design

Inadequate capacity utiliation Inconsistency of throughput and product mix Preventive maintenance schedules not followed

Impact of Condensate Recovery

- Water Charges : Any condensate not recovered to boiler feed water tank has to be made up in the form of make-up water, thereby make water cost increases
- Reduced Water Treatment Costs : Condensate is an ideal boiler feed water.
- **Compliance Norms :** Draining of hot condensate is increasingly restricted as most plants are expected to meet Zero Liquid Discharge (ZLD) norms.
- No boiler derating : Boiler output is maximized
- **Reduction in Fuel Bill :** Condensate is a valuable resource, even relatively small quantity, say from even a single steam trap is economically justifiable
- Every 6 Deg C increase in feed water temperature due to recovery of flash steam and condensate recovery reduces the FUEL BILL by 1%

Proprietary content

Condensate Recovery Overview

Sustenance of KPIs- An Important Face

Why is digital sustenance of Paramters?

At an Existing Plant **FORBES** MARSHALL

Why is Digital Sustenance Service Needed?

Performance Variance Over Period of Time @ Embio Pharma

Yash, October 2023

Boiler Efficiency

Equipment Level KPI

Equipment Level Success Story Boiler Efficiency @ P&C Plant in Baroda

Boiler Efficiency Pre Boiler Efficiency Post 90 89 88.3 88 87.5 86.8 86.7 86.6 87 86 85 3 -2 Fine Tuning Sustenance 1 Pre Service Pre Service Pre Service

Analysis, Actions and Interaction

Stack O2 is slightly higher on the side.- We will help you to fine tune Burner operation; give training; guide on corrective action starting from tomorrow with our Boiler Burner expert so that we can increase S:f ratio & start reducing gas Consumption

	Efficiency	S:F	Steam Flow	Steam Pressure	Oxygen	Stack temp.	Drum TDS	Feedwater temp.	On/Off per hour
Yesterday	88.3 ± 0.5	12.1 ± 0.3	1468.2 ± 230.4	8.2 ± 0.3	2.7 ± 0.5	201.8 ± 8.1	3490.6 ± 29.6	68.7 ± 6.6	0.0
Last Week	87.1 ± 0.9	12.1 ± 0.4	1555.2 ± 211.9	7.9 ± 0.6	5.1 ± 1.4	206.7 ± 6.7	3491.6 ± 35.6	68.9 ± 5.7	0.0

Plant Level Engagement

Condensate Recovery Factor

Water accountability and Management

Plant Level Success Story Condensate Recovery Factor @ P&C Plant in Baroda

Analysis, Action and Implementation

- Flash steam recovery from Old plant
- Old pump Recovery is not online & not calculated
- · MLT header line Condensate is drained
- PSG MP condensate is flashed in open tank, flash vented & only condensate recovered
- Both Flash steam from PSG via flash vessel & from
 FJP Steam recovery & inter connection
- Maintain level of 2.5-3 KL instead of 5-5.5 kl
- Deaerator Connection interchange for Condensate
 & flash steam
- Tapping for FWT bottom to deaerator top recirculation line

Energy Conservation Steam Utilization-KPI At Equipment level

Fludised Bed Dryer/Auto Coater/ Wruster

Equipment Side

Utility Side

Environmental

Higher Batch Time & Startup Time

Degradation of Product – Product

Quality?

Higher Steam Consumption Loss of Steam through Steam Traps **Bypass** Higher Batch timings leading to higher electrical consumption

ETP load increase due to draining of condensate Increased Carbon footprint

Cause, Effect & Control

ow flow pump

Typical Losses Root Cause Available Patented Technology Higher Batch Time & Startup Time Degradation of Product – Product Quality? Steam Measurement with dryness Radiation Losses **Combo-Pressure**, Charging of Air Heater Battery **Temperature & Flow** despite no batch monitoring Water hammering **Higher Steam Consumption** Incorrect Pressure & Temperature **Two Orifice STALL** Loss of Steam through Steam Traps control valve selection **Eliminator*** Bypass Higher Batch timings leading to Incorrect Steam Trap Selection not higher electrical consumption

ETP load increase due to draining of condensate

being able to function under Stall

Redundant (with low load) or bypassed equipment

Multi Utility Reactor

Production Loss

Utility Side

Environmental

ETP/Cooling Tower load increase due to draining of condensate

Condensate drain due to fear of

Higher Batch Time & Startup Time

Charging of Reactor despite no batch

Loss of Steam through Steam Traps

Radiation Losses

Water hammering

Higher Steam Consumption

Corroded Condensers

Scaling

Bypass

Utility Mixing

contamination

Cause, Effect & Control

Typical Losses	Root Cause	Available Patented
Higher Batch Time & Startup Time		Technology
Radiation Losses Charging of Reactor despite no batch	Incorrect Pressure & Temperature control valve selection	Steam Measurement
Scaling		with dryness
Water hammering	Incorrect Steam Trap Selection not being able to function under Stall	Combo-Pressure
		& Flow monitoring
Higher Steam Consumption		Two Orifice TDC
Bypass Corroded Condensers	Manual Intervention to segregate utilities	Condensate Separator
Utility Mixing		Cleared Learn
Condensate drain due to fear of contamination	Inability to predict fouling rate	indensate Recovery
		Θ
ETP/Cooling Tower load increase	Bypassed equipment	
due to draining of condensate		

Smart Process Trap- MuPT

Benefits

- Equipment level contamination detection and diversion.
- Process equipment failure detection (Heat Exchanger)
- Improved condensate recovery factor
- Utility and condensate segregation
- Inbuilt trap monitoring system (detects and indicates system status and failures)
- Compact, Integrated, and onlinemaintainable design

FM Partner Plants

Industries

Pharma & Chem Food & Beverage Textiles Power Plants Paper Water AAC Blocks Automobiles Metal & Mines Plywood & Laminates

Monitoring every Minute Plants: 451 Assets: 893 Parameters: 6000 Control Loops: 726	Drop rate Connected Sites $\cong 1\%$
Service Running	Customer engagements :
287	Reports & connects
Across 240 plants	$\cong 600$

How does FM Digital Sustenance Service Work?

Analyse

			1 Stack	02	%	0 to 0	
Parameter		Va	alue	e I	Pressure	4 to 5	
Stack O2 %		0	to 1	Ì		100	
Furnace Pressu mmWc	re	-8 to -7			/ % 84 to 8		36
Efficiency %		78	78 to 80		nprature	198 to 201	
Stack Tempratu °C	re	191 10 101		l		1 , 49 to 5	
ID, FD, Feeder	1		Stack O2 %	6 to 7			to 48
output %			Furnace Pressure mmWc	Furnace Pressure		-3 to -2	
	3		Efficiency %		82 to 84		
	4		Stack Temprature °C	9	202 to 205		
	5		ID, FD, Feeder		81 to 84, 53	to 56	
	Parameter Stack O2 % Furnace Pressu mmWc Efficiency % Stack Tempratu *C ID, FD, Feeder output %	Parameter Stack O2 % Furnace Pressure mmWc Efficiency % Stack Temprature *C ID, FD, Feeder output % 2 3 4 5	Parameter Vi Stack O2 % 0 Furnace Pressure mmWc -8 Efficiency % 78 Stack Temprature •C 1 ID, FD, Feeder output % 2 3 4 5	Parameter Value Stack O2 % 0 to 1 Furnace Pressure mmWc -8 to -7 Efficiency % 78 to 80 Stack Temprature 10 Stack O2 % iD, FD, Feeder output % 2 Furnace Pressure mmWc 3 Efficiency % 4 Stack Temprature °C 1 Stack O2 % 0 5 ID, FD, Feeder output % 5	Parameter Value Parameter Stack O2 % 0 to 1 Furnace Pressure mmWc -8 to -7 1cy Efficiency % 78 to 80 Fernace Pressure Stack Temprature *C 1 Stack O2 % ID, FD, Feeder output % 2 Furnace Pressure mmWc 3 Efficiency % 4 Stack Temprature *C 5 ID, FD, Feeder output fér	Parameter Value P Pressure Stack O2 % 0 to 1 e Pressure Furnace Pressure mmWc -8 to -7 icy % Efficiency % 78 to 80 femprature *C 1 Stack O2 % 6 to 7 ID, FD, Feeder output % 2 Furnace Pressure mmWc -3 to -2 3 Efficiency % 82 to 84 4 Stack Temprature *C 202 to 205 5 ID, FD, Feeder word 14 for 34, 55	Parameter Value Pressure 6 to 0 Stack O2 % 0 to 1 e Pressure 4 to 5 Furnace Pressure mmWc -8 to -7 icy % 84 to 8 Efficiency % 78 to 80 femprature 198 to Stack Temprature output % -2 Furnace Pressure mWc -3 to -2 ID, FD, Feeder output % 2 Furnace Pressure mWc -3 to -2 3 Efficiency % 82 to 84 4 4 Stack Temprature °C 202 to 205 5 5 ID, FD, Feeder output % 81 to 84, 53 to 56

‹#>

Services Overview

IMPACTING USER'S KPI : PRODUCTIVITY, COST, SAFETY, ENVIRONMENT

Thank you

www.forbesmarshall.com

<#>

Product Level Success Story

Emissions

Effluent

Product KPI's Improve uptime

Continuous Emission Monitoring System (CEMS)

From 35 to 90%

Gas Analyzer

FORBES

MARSHALL

Dust Analyzer

Success Story

Product Level

Emissions

DVC - Fleet of 8 nos TPP supplying electricity to West Bengal totalling 6.5 GW @Mejia TPS

Proprietary content

Industrial water Conservation- Partnering Approach

Reuse

Recycle

Plant Survey, Study and Analysis

Spectrum is one of the largest producers of Disperse Dyes in India and catering to almost all commercially available Variants in the segment.

- 4300 M3/ day water consumptions
- Plant survey done & Milestones identified.
- Step by step improvement planned & implemented.
- Monthly reports & issues were highlighted to Spectrum.

Type of Water	•
Raw Water	(Green)
TTeateu + DVV	(Daix
Blue)	
Flocess	(Light
Blue)	
Utility	(Orange)
Domestic	U dik
Green)	
Effluent	(Red)

Source - Borewell management services deployed

Individual borewell details

Observations:

=

- **BW 1** There was uniform water extraction through this borewell for the stated period. There is slight air movement reported during water extraction. By throttling the isolation valve this issue can be rectified.
- BW 4 There is air movement reported during water extraction. By throttling the isolation valve this issue can be rectified. There was no water extraction through this borewell during the period 26 Dec 2022 to 2nd Jan 2023. There has been a drop in actual ground water level for this borewell. We suggest throttling the isolation valve else it may lead to failure of pump.
- BW11 There has been drift in zero reading by (-4.5m3/hr) for this borewell. It is reading less than actual water extraction.
- BW12 There is a drop in discharge flow rate for this borewell from 19m2/hr in November to 12m3/hr in December and again it dropped to 10.5m3/hr in January. We suggest checking
 - Issues: Air movement in the water lines, Zero Drift, Dry run & Drop in discharge flow rate.
 - All Observation were validated & rectified.
 - Improved water balance from 61% to 88%

water Balance for Supplier (ex: Utility dept)

	Sect	on A	: wate	erbala	ance	Total	Unaccounted water in RAW
	(BW1+BW2 +BW3)	(RO per + PTP1)	n "A"	n "B"	n "D"	(Total Feed to RO+A+B+D)	(Source - Consumption)
2-Feb-23	1689	742	1056	183	70	2051	-362
3-Feb-23	1722	830	1185	200	81	2296	-574
4-Feb-23	1496	734	1219	187	71	2210	-714
5-Feb-23	2000	827	1383	200	70	2480	-480
6-Feb-23	2044	848	1168	202	73	2291	-247
7-Feb-23	1930	821	1199	201	75	2296	-366
8-Feb-23	1907	828	1205	199	78	2310	-403
9-Feb-23	1725	822	1010	190	74	2096	-371
10-Feb-23	1937	885	1175	183	79	2322	-385
11-Feb-23	1729	789	1027	177	76	2068	-339
12-Feb-23	1754	848	1018	175	90	2132	-378
13-Feb-23	1914	810	1166	197	87	2260	-346
Total	77492	31419	49061	7567	3316	91363	-13871
Average	1761	714	1115	172	75	2076	-315

Section A

Source = 1761 Consumption = 2076

Section A Error = -315

Corrective Action:

Flowmeter in branches needs upgradation

<u>Section B</u> Source = 2

Source = 2470Consumption = 1922Reject = 0560Error = -12

Corrective Action:

2 source flow meter non functional

	Section B : waterbalance		Cent	WTP & RO4 feed	Difference	Raw water intake	Total Intake to NF	Process	Utiltiy	Domestic	Total	Unaccount	
Date	treatment(BW4 +8+12+13+14)	(NF per +RO4 per)	(PTP2 Effleunet)	Treatment/Total Feed*100)	Total (Permeate + Reject)	(Source - (Per+Reject))	to NF permeate Tank (BW9+11)	Permeate tank (NF Per + BW9+BW11)	Consumptio n "A"	consumptio n "B"	consumptio n "D"	IO NF Tank (A+B+D)	Intake v consun
22-Jan-23	1587	1056	541	67	1596	-9	763	1818	1544	156	135	1836	-1
23-Jan-23	1540	934	516	61	1451	89	760	1694	1500	132	109	1742	-4
24-Jan-23	1528	1058	597	69	1655	-128	1167	2225	1657	209	142	2009	2:
25-Jan-23	1548	1099	612	71	1711	0	0	1099	1727	183	136	2046	-9
26-Jan-23	1501	1035	580	69	1616	-114	1076	2111	1640	181	155	1975	15
27-Jan-23	1468	1061	571	72	1631	-163	962	2022	1613	157	152	1921	10
28-Jan-23	1350	1046	593	78	1639	-290	1054	2100	1619	170	112	1901	19
29-Jan-23	1344	1135	583	84	1718	-373	777	1870	1414	164	99	1676	19
30-Jan-23	1300	1003	549	77	1552	-252	646	1649	1416	112	107	1636	1
31-Jan-23	1330	931	529	70	1461	-130	480	1411	1169	108	99	1376	3
Total	64573	44909	24646	3106	69555	-4819	38203	82344	71459	7741	5380	84581	-22

Consumption report for consumer (ex: formulation plant)

PLANT NAME : SPECTRUM PLANT FORMULATION-3

	PERMISSIBLE LIMIT	LAST 7 DAYS (m3/day)								
		2023-02- 23	2023-02- 24	2023-02- 25	2023-02- 26	2023-02- 27	2023-02- 28	2023-03- 01		
PLANT CONSUMPTION		32.9	66.7	76.1	62.1	73.4	50.2	61.6		
UTILITY CONSUMPTION		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
TOTAL CONSUMPTION		32.9	66.7	76.1	62.1	73.4	50.2	61.6		
EFFLUENT DISCHARGED		0.0	0.0	0.0	0.0	0.0	0.0	0.0		

	PERMISSIBLE	LAST 3 MONTHS AVG.(m3/Day)								
	LIMIT	Current Month (Mar 23)	Feb 23	Jan 23	Dec 22	Nov 22				
PLANT CONSUMPTION		61.6	85.6	60.8	74.04	73.27				
UTILITY CONSUMPTION		0.0	0.0	0.0	0.0	0.0				
TOTAL CONSUMPTION		61.6	85.6	60.8	74.04	73.27				
EFFLUENT DISCHARGED		0.0	0.0	0.0	0.0	0.0				

Establishing Baseline

In absence of a Baseline Every consumer is asked to sign this report

After 90 days the average with be the baseline

Benefits documented

balance year: To achieve a water balance of 95

Next goal: To achieve 95% water balance

Nest Year : Implement opportunity of Reduce, Reuse and Recycle

 \approx

Date: 16 Feb 2023

Subject: Partnering with Forbes marshall for Improving Water balance of our plant Dear Jaydeep,

Forbes Marshall have helped us in waterMAP sustenance services for A: water balance for the two circuits B: groundwater extraction

Installation: 22 nos "waterMap Sensing Nodes" to monitor water at critical junctures.

Sustenance Services include

- 1. A detailed plant water network survey with multiple visits.
- 2. Establishing a simplified single line diagram highlighting two important water circuits.
- 3. Identifying different types of water based on the usage pattern.
- 4. Decoupling the Water Management department and the Consumers
- Identified anomalies at 15 critical junctures with specific "GoTo's" for corrections These included
 - A: meter Zero drift error &
 - B: half bore conditions (improper installations)
 - C: Assets performance like NRV. Isolation valve and Pumps
- 6. Deploying a User Interactive Dashboard
- 7. Configuring and delivering monthly review reports
- 8. Release of daily reports for consumers establishing their previous day's performance
- 9. Templates for calculating monthly consumptions of 25 plants,

This exercise has helped us

- 1. Improvement in "accounted for" water by 17%
- 2. Demonstrating the overall water balance of 88%
- 3. Establishing a baseline for every consumer.

Aim for balance year: To achieve a water balance of 95%

The sustenance services provided by M/s FORBES MARSHALL PVT. LTD., India for water balancing activities are meeting our expectations and helping us progress our water sustenance goals with a systematic framework, guiding us at each stage with Substantiation of improvements and priorities with tentative savings for next steps.

Yours Sincerely, For M's Spectrum Dyes and Chemicals Pvt Ltd v McDater Mr. Mayank Choksi AGM- Purchase

Proprietary content

On FM Cloud - EverSENSE Platform Domain knowledge driving performance

Proprietary content

FM is happy to partner with you for..

- Analysis of present performance
- Improvements through domain knowledge, products and systems
- Sustenance through ongoing digital and on-site engagement